PULSION Medical Systems

PiCCO Technology Literature

1. REVIEWS ... 3
 1.1 General .. 3
 1.2 Cardiac Output .. 3
 1.3 Preload .. 3
 1.4 Lung Water ... 4
 1.5 Pediatric ... 4

2. GUIDELINES AND STANDARD OPERATING PROCEDURES .. 4

3. OUTCOME PAPERS ... 5

4A PICCO PARAMETERS – METHODOLOGY ... 6
 4a.1 FLOW (Cardiac Output) .. 6
 4a.2 PRELOAD (Global End Diastolic Volume and Intrathoracic Blood Volume) 7
 4a.3 CONTRACTILITY (Global Ejection Fraction, Cardiac Function Index and Left Ventricular Contractility) ... 7
 4a.4 VOLUME RESPONSIVENESS (Stroke Volume Variation and Pulse Pressure Variation) 7
 4a.5 PULMONARY OEDEMA (Extravascular Lung Water) .. 7

4B PICCO PARAMETERS – VALIDATION .. 8
 4b.1 FLOW (Cardiac Output) .. 8
 4b.2 PRELOAD (Global End Diastolic Volume and Intrathoracic Blood Volume) 9
 4b.3 CONTRACTILITY (Global Ejection Fraction, Cardiac Function Index and Left Ventricular Contractility) ... 9
 4b.4 VOLUME RESPONSIVENESS (Stroke Volume Variation and Pulse Pressure Variation) 10
 4b.5 PULMONARY OEDEMA (Extravascular Lung Water) .. 10

5. FIELDS OF APPLICATION .. 11
 5.1 ALI / ARDS .. 11
 5.2 Burns ... 13
 5.3 Cardiac Surgery ... 13
 5.4 Cardiogenic Shock .. 14
 5.5 Hypovolemic Shock .. 15
5.6 Medical ICU ... 15
5.7 Neurology / Neurosurgery ... 16
5.8 Pediatrics.. 18
5.9 Septic Shock.. 20
5.10 Surgical Intensive Care... 20
5.11 Transplantation ... 21
5.12 Lung Resection ... 22
5.13 Trauma ... 22

6. PICCO PARAMETERS IN VARIOUS CLINICAL SITUATIONS .. 23

7. CATHETERS ... 25

- Very highly recommended
- Highly recommended
- Recommended

'This document is intended to provide information to an international audience outside of the US'
1. Reviews

1.1 General
Assaad S, Popescu W, Perrino A
Fluid management in thoracic surgery
Curr Opin Anaesthesiol 2013; 26(1): 31-9

Sakka SG, Reuter DA, Perel A
The transpulmonary thermodilution technique
J Clin Monit Comput 2012; 26: 347-53

Oren-Grinberg A.
The PiCCO Monitor
International Anesthesiology Clinics 2010; 48(1): 57 – 85

Reuter D, Huang C, Edrich T, Shernan SK, Eltzschig HK
Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives
Anesth Analg, 2010; 110(3): 799-811

King D & Price AM.
Measuring cardiac output using the PiCCO system
British Journal of Cardiac Nursing 2008; 3 (11): 512-519

Malbrain M, De Potter P, Deeren D.
Cost Effectiveness of minimally invasive hemodynamic monitoring

Genahr A, McLuckie A
Transpulmonary thermodilution in the critically ill
Brit J Int Care 2004: 6-10

1.2 Cardiac Output
Reuter D, Goetz AE
[Messung des Herzzeitvolumens] (Article in German)
Anaesthesist 2005; 54:1135-53

1.3 Preload
Eichhorn V, Goepfert MS, Eulenburg C, Malbrain ML, Reuter DA
Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: A metaanalysis of the literature
Med Intensiva 2012; 36(7): 467-74

Della Rocca G, Costa MG, Pietropaoli P.
How to measure and interpret volumetric measures of preload
Curr Opin Crit Care 2007; 13(3): 297-302
1.4 Lung Water
Zhang Z, Lu B, Ni H.
Prognostic value of extravascular lung water index in critically ill patients: A systematic review of the literature
J Crit Care 2012; 27(4): 420 e.1-9

Maharaj R.
Extravascular lung water and acute lung injury
Cardiol Res Pract 2011; 2012: 407035

Fernandez-Mondejar E, Guerrero-López F, Colmenero M.
How important is the measurement of extravascular lung water?
Curr Opin Crit Care 2007; 13: 79-83

Michard F.
Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls

Isakow W, Schuster DP.
Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter
Am J Physiol Lung Cell Mol Physiol 2006; 291: 1118-33

1.5 Pediatric
Lemson J, Nusmeier A, van der Hoeven JG
Advanced Hemodynamic Monitoring in Critically Ill Children
Pediatrics 2011; 128(3): 560-71

2. Guidelines and Standard Operating Procedures
Prevention, diagnosis, treatment, and follow-up care of sepsis. First revision of the S2k Guidelines of the German Sepsis Society (DSG) and the German Interdisciplinary Association for Intensive and Emergency Care Medicine (DIVI)]
Anaesthesist 2010; 59(4): 347-70

S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculatory system
Ger Med Sci 2010; 8: Doc12 (article in German)

2007 American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock
Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
Intensive Care Med 2008; 34(1): 17-60

Kortgen A, Niederprün P, Bauer M.
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock

3. Outcome papers

Lu NF, Zheng RQ, Lin H, Shao J, Yu JQ, Yang G
Improved sepsis bundles in the treatment of septic shock: a prospective clinical study

Early Intensive Versus Minimally Invasive Approach to Postoperative Hemodynamic Management After Subarachnoid Hemorrhage
Stroke 2014; 45(5): 1280-4

Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome
Multidiscip Respir Med 2014; 9(1): 3

Individually Optimized Hemodynamic Therapy Reduces Complications and Length of Stay in the Intensive Care Unit: A Prospective, Randomized Controlled Trial
Anesthesiology 2013; 119(4); 824-36

Optimized fluid management improves outcomes of pediatric burn patients

Adler C, Reuter H, Seck C, Hellmich M, Zobel C
Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest
Resuscitation 2013; 84(2): 194-9

Lenkin AI, Kirov MY, Kuzkov VV, Paromov KV, Smetkin AA, Lie M, Bjertnaes LJ
Comparison of goal-directed hemodynamic optimization using pulmonary artery catheter and transpulmonary thermodilution in combined valve repair: a randomized clinical trial
Influence of extravascular lung water determination in fluid and vasoactive therapy
J Trauma 2009; 67(6): 1220-4
●●●

Mutoh T, Kazumata K, Ishikawa T, Terasaka S
Performance of Bedside Transpulmonary Thermodilution Monitoring for Goal-Directed Hemodynamic Management After Subarachnoid Hemorrhage
Stroke 2009; 40(7): 2368 - 74
●●●

Smetkin AA, Kirov M, Kuzkov VV, Lenkin AI, Eremeev AV, Slastilin VY, Borodin VV, Bjertnaes LJ.
Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery.
●●●

Csontos C, Foldi V, Fischer T, Bogar L.
Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation.
●●●

Goepfert M, Reuter D, Akyol D, Lamm P, Kilger E, Goetz A.
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine 2007; 33: 96-103
●●●

Mitchell JP, Schuller D, Calandrino FS, Schuster DP.
Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization
●●●

4a PiCCO PARAMETERS – METHODOLOGY

4a.1 FLOW (Cardiac Output)
Smith JA, Camporota L, Beale R
Monitoring arterial blood pressure and cardiac output using central or peripheral arterial pressure waveforms
Yearbook of Intensive and Emergency Medicine 2009; 285 - 296
●●●

Segal E, Katzenelson R, Berkenstadt H, Perel A.
Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients
●●●

Sakka SG, Meier-Hellmann A.
Evaluation of cardiac output and cardiac preload
●●
4a.2 PRELOAD (Global End Diastolic Volume and Intrathoracic Blood Volume)
Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography
Br J Anaesth 2005; 94(6): 748-55

Buhre W, Buhre K, Kazmaier S, Sonntag H, Weyland A.
Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography
Eur J Anaesthesiol 2001; 18(10): 662-7

McLuckie A, Bihari D.
Investigating the relationship between intrathoracic blood volume index and cardiac index
Intensive Care Med 2000; 26(9): 1376-8

4a.3 CONTRACTILITY (Global Ejection Fraction, Cardiac Function Index and Left Ventricular Contractility)
Michard F, Perel A.
Management of circulatory and respiratory failure using less invasive hemodynamic monitoring
In: Vincent JL (Ed.), Yearbook of Intensive Care and Emergency Medicine 2003; 508-20

Evaluation of the cardiac function index as a new bedside indicator of cardiac performance
Intensive Care Med 1994; 20(S2):21

4a.4 VOLUME RESPONSIVENESS (Stroke Volume Variation and Pulse Pressure Variation)
Reuter DA, Goepfert MS, Goresch T, Schmoeckel M, Kilger E, Goetz AE.
Assessing fluid responsiveness during open chest conditions
Br J Anaesth 2005; 94(3): 318-23

Prediction of fluid responsiveness in patients during cardiac surgery
Br J Anaesth 2004; 93(6): 782-8

Reuter DA, Felbinger TW, Kilger E, Schmidt C, Lamm P, Goetz AE.
Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations
Br J Anaesth 2002; 88(1): 124-6

4a.5 PULMONARY OEDEMA (Extravascular Lung Water)
Phillips C, Chesnutt M, Smith M.
Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival
Crit Care Med, 2008: 36(1); 69-73
Sakka SG, Klein M, Reinhart K, Meier-Hellmann A.
Prognostic value of extravascular lung water in critically ill patients
Chest 2002; 122(6): 2080-6

●●●

4b. PICCO PARAMETERS – VALIDATION

4b.1 FLOW (Cardiac Output)

Calbet JA and Boushel RC
Assessment of cardiac output with transpulmonary thermodilution during exercise in man

●●●

Petzoldt M, Riedel C, Braeunig J, Haas S, Goepfert MS, Treede H, Baldus S, Goetz AE, Reuter DA
Stroke volume determination using transcardiopulmonary thermodilution and arterial pulse contour analysis in severe aortic valve disease

●●●

Effect of norepinephrine dosage and calibration frequency on accuracy of pulse contour-derived cardiac output

●●●

Friesecke S, Heinrich A, Abel P, Felix SB
Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method

●●●

Lemson J, de Boode WP, Hopman JC, Singh SK, van der Hoeven JG
Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model

●●

Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE
Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis

●●●

Marx G, Schuerholz T, Sumpelmann R, Simon T, Leuwer M
Comparison of cardiac output measurements by arterial trans-cardiopulmonary and pulmonary arterial thermodilution with direct Fick in septic shock
Eur J Anaesthesiol 2005; 22(2):129-34

●●●

Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output

●●●
Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability
Crit Care Med 2002; 30(1):52-8

4b.2 PRELOAD (Global Enddiastolic Volume and Intrathoracic Blood Volume)
Global End-Diastolic Volume as a Variable of Fluid Responsiveness During Acute Changing Loading Conditions
J Cardiothorac Vasc Anesth 2007; 21(5): 650-4

Kozieras, J, Thuemer O, Sakka SG
Influence of an acute increase in systemic vascular resistance on transpulmonary thermodilution-derived parameters in critically ill patients
Intensive Care Med 2007; 33:1619-23

Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest 2003; 124(5):1900-8

4b.3 CONTRACTILITY (Global Ejection Fraction, Cardiac Function Index and Left Ventricular Contractility)
Aguilar G, Belda FJ, Ferrando C, Jover JL
Assessing the left ventricular systolic function at the bedside: the role of transpulmonary thermodilution-derived indices
Anesthesiol Res Pract 2011: 927421

Assessment of left ventricular systolic function during acute myocardial ischemia: A comparison of transpulmonary thermodilution and transesophageal echocardiography
Minerva Anestesiol 2011; 77(2): 132-41

Trepte CJ, Eichhorn V, Haas SA, Richter HP, Goepfert MS, Kubitz JC, Goetz AE, Reuter DA
Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function
Crit Care Med 2011; 39(9): 2106-12

Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function

de Hert S, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigues IE
Evaluation of Left Ventricular Function in Anesthetised Patients Using Femoral Artery dP/dtmax
J Cardio Thor Vasc Anes 2006; 20(3): 325-30
Combes A, Berneau JB, Lut CE, Trouillet JL
Estimation of left ventricular systolic function by single transpulmonary thermodilution
Intensive Care Med 2004; 30(7): 1377-83
●●

4b.4 VOLUME RESPONSIVENESS (Stroke Volume Variation and Pulse Pressure Variation)
Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload
Br J Anaesth 2007; 98(5): 591-7
●●

Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A
Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting
Chest 2005; 128(2):848-54
●●●

Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE
Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function
Crit Care Med 2003; 31(5):1399-404
●●●

4b.5 PULMONARY OEDEMA (Extravascular Lung Water)
Nusmeier A, Cecchetti C, Blohm M, Lehman R, van der Hoeven J, Lemson J
Near-normal values of extravascular lung water in children
Pediatr Crit Care Med 2015; 16(2): e28-33
●●

Measurement of extravascular lung water following human brain death; implications for lung donor assessment and transplantation
●●●

Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, Oyama R, Kawaguchi T, Masuno T, Hirama H, Yokota H
Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study
Crit Care 2010; 14(5): R162
●●●

Lemson J, Backx AP, van Oort AM, Bouw TP, van der Hoeven JG
Extravascular lung water measurement using transpulmonary thermodilution in children
●●●

Monnet X, Anguel N, Osman D, Hamzaoui, Richard C, Teboul JL
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS
●●●
Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ
Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep
Crit Care 2004; 8(6):R451-8

Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E
Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water
Crit Care Med 2004; 32(7):1550-4

Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A
Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution

5. Fields of Application

5.1 ALI / ARDS
Jozwiak M, Teboul JL, Monnet X
Extravascular lung water in critical care: recent advances and clinical applications

Extravascular Lung Water and Pulmonary Vascular Permeability Index as Markers Predictive of Postoperative Acute Respiratory Distress Syndrome: A Prospective Cohort Investigation
Crit Care Med 2014; 43(3): 665 - 73

Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients
Annals of Intensive Care 2014; 4: 27

Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome
Multidiscip Respir Med 2014; 9(1): 3

Brown LM, Calfee CS, Howard JP, Craig TR, Matthay MA, McAuley DF
Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury

Kushimoto S, Endo T, Yamanouchi S, Sakamoto T, Ishikura H, Kitazawa Y et al.
Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition
Crit Care 2013; 17(4): R132

Jan 2016 Pulsion Medical Systems SE PICCO Technology Literature List Page 11 of 26
Quantitative Diagnosis of Diffuse Alveolar Damage Using Extravascular Lung Water
Crit Care Med 2013; 41(9); 2144-50
●●●

Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome
●●●

Kushimoto S, Taira T, Taira, Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, Endo T, Yamanouchi S et al.,
The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome
Crit Care 2012; 16(6): R232
●●●

Letourneau JL, Pinney J, Phillips C
Extravascular lung water predicts progression to acute lung injury in patients with increased risk
Crit Care Med 2012; 40(3): 947-54
●●●

Craig TR, Duffy MJ, Shyamsundar M, McDowell C, McLaughlin B, Elborn JS, McAuley D
Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury
Crit Care Med 2010; 38(1): 114-20
●●●

Berkowitz DM, Danai PA, Eaton S, Moss M, Martin G
Accurate characterization of extravascular lung water in acute respiratory distress syndrome
●●●

Phillips C, Chesnutt M, Smith M
Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival
Crit Care Med, 2008: 36(1); 69-73
●●●

Monnet X, Anguel N, Osman D, Hamzaoui, Richard C, Teboul JL
Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI / ARDS
●●●

Perkins GD, McAuley DF, Thickett DR, Gao F
The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial
Am J Respir Crit Care Med 2006; 173(3): 281-7
●●●
5.2 Burns
Sanchez-Sanchez M, Garcia-de-Lorenzo A, Herrero E, Lopez T, Galvan B, Asensio MJ, Cachafeiro L, Casado C
A protocol for resuscitation of severe burn patients guided by transpulmonary thermodilution and lactate levels: A 3-year prospective cohort study
Crit Care 2013; 17(4): R176

Branski LK, Herndon DN, Byrd JF, Kinsky MP, Lee JO, Fagan SP, Jeschke MG
Transpulmonary thermodilution for hemodynamic measurements in severely burned children

Bognar Z, Foldi V, Rezman B, Bogar L, Csontos C
Extravascular lung water index as a sign of developing sepsis in burns
Burns 2010; 8: 1263-70

Csontos C, Foldi V, Fischer T, Bogar L
Arterial thermodilution in burn patients suggests a more rapid fluid administration during early resuscitation

Reproducibility of transpulmonary thermodilution measurements in patients with burn shock and hypothermia

Holm C, Melcer B, Horbrand F, Henckel von Donnersmarck G, Muhlbauer W.
Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients
Burns 2001; 27(2):161-6

Holm C, Melcer B, Horbrand F, Worl H, von Donnersmarck GH, Muhlbauer W.
Intrathoracic blood volume as an end point in resuscitation of the severely burned: an observational study of 24 patients
J Trauma 2000; 48(4):728-34

5.3 Cardiac Surgery
Individually Optimized Hemodynamic Therapy Reduces Complications and Length of Stay in the Intensive Care Unit: A Prospective, Randomized Controlled Trial
Anesthesiology 2013; 119(4); 824-36

Staier K, Wilhelm M, Wiesenack C, Thoma M, Keyl C
Pulmonary artery vs. transpulmonary thermodilution for the assessment of cardiac output in mitral regurgitation: a prospective method comparison study
Eur J Anaesthesiol 2012; 29(9): 431-7
Smetkin AA, Kirov M, Kuzkov VV, Lenkin AI, Erremeev AV, Slastilin VY, Borodin VV, Bjertnaes LJ
Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery.

Goepfert M, Reuter D, Akyol D, Lamm P, Kilger E, Goetz A
Goal directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients
Intensive Care Medicine 2007; 33: 96-103

Wouters PF, Quaghebeur B, Sergeant P, Van Hemelrijck J, Vandermeersch E
Cardiac output monitoring using a brachial arterial catheter during off-pump coronary artery bypass grafting

Bettex DA, Hinselmann V, Hellermann JP, Jenni R, Schmid ER
Transoesophageal echocardiography is more unreliable for cardiac output assessment after cardiac surgery compared with thermodilution
Anesthesia 2004; 59:1184-92

Comparison of continuous cardiac output measurements in patients after cardiac surgery
J Cardiothorac Vasc Anesth 2003; 17(2):211-6

Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting

Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery

5.4 Cardiogenic Shock
Schmid B, Fink K, Olschewski M, Richter S, Schwab T, Brunner M, Busch HJ
Accuracy and precision of transcardiopulmonary thermodilution in patients with cardiogenic shock
J Clin Monit Comput 2015; epub

Perny J, Kimmoun A, Perez P, Levy B
Evaluation of cardiac function index as measured by transpulmonary thermodilution as an indicator of left ventricular ejection fraction in cardiogenic shock
Biomed Res Int 2014: 598029

Ritter S, Rudiger A, Maggiorini M
Transpulmonary thermodilution derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study
Crit Care 2009; 13(4): R133
Friesecke S, Heinrich A, Abel P, Felix SB
Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method

The impact of Intra-aortic Balloon Pumping on Cardiac Output Determination by Pulmonary Arterial and Transpulmonary Thermodilution in Pigs
J of Cardiovasc and Vasc Anesth 2006; 20 (3):320-4

5.5 Hypovolemic Shock
Nirmalan M, Niranjan M, Willard T, Edwards JD, Little RA, Dark PM
Estimation of errors in determining intrathoracic blood volume using thermal dilution in pigs with acute lung injury and haemorrhage

Berkenstadt H, Friedman Z, Preisman S, Keidan I, Livingstone D, Perel A
Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs

Friedman Z, Berkenstadt H, Margalit N, Segal E, Perel A
Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique

5.6 Medical ICU
The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study
J Clin Monit Comput 2015; epub

Kutter AP, Mosing M, Hartnack S, Raszplewicz J, Renggli M, Mauch JY, Hofer CK
The Influence of Acute Pulmonary Hypertension on Cardiac Output Measurements: Calibrated Pulse Contour Analysis, Transpulmonary and Pulmonary Artery Thermodilution Against a Modified Fick Method in an Animal Model

Luo JC, Qiu XH, Pan C, Xie JF, Yu T, Liu L, Yang Y, Qiu HB
Increased cardiac index attenuates septic acute kidney injury: a prospective observational study
BMC Anesthesiol 2015; 15: 22

Extravascular Lung Water, B-Type Natriuretic Peptide, and Blood Volume Contraction Enable Diagnosis of Weaning-Induced Pulmonary Edema
Crit Care Med 2014; 42(8): 1882 - 9
Transpulmonary Thermodilution Enables to Detect Small Short-Term Changes in Extravascular Lung Water
Induced by a Bronchoalveolar Lavage
Crit Care Med 2014; 42(8): 1869-73

The impact of early goal-directed fluid management on survival in an experimental model of severe acute
pancreatitis

Chew MS, Ihrman L, During J, Bergenzaun L, Ersson A, Unden J, Ryden J, Akerman E, Larsson M
Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock
Crit Care 2012; 16(1): R1

Saugel B, Ringmaier S, Holzapfel K, Schuster T, Phillip V, Schmid RM, Huber W
Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary
thermodilution-derived hemodynamic parameters in critically ill patients: A prospective trial
J Crit Care 2011; 26(4): 402-10

Henschel B, Schmid RM
Volume assessment in patients with necrotizing pancreatitis: A comparison of intrathoracic blood volume
index (ITBI), central venous pressure, and hematocrit, and their correlation to cardiac index and
extravascular lung water index
Crit Care Med 2008; 36 (8): 2348-54

Chung FT, Lin SM, Lin SY, Lin HC
Impact of extravascular lung water index on outcomes of severe sepsis patients in a medical intensive care
unit
Respir Med 2008; 102(7): 956-61

Kortgen A, Niederprüin P, Bauer M
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock

Mitchell JP, Schuller D, Calandrino FS, Schuster DP
Improved outcome based on fluid management in critically ill patients requiring pulmonary artery
catheterization

5.7 Neurology / Neurosurgery
Obata Y, Takeda J, Sato Y, Ishikura H, Matsu T, Isotani E
A multicenter prospective cohort study of volume management after subarachnoid hemorrhage: circulatory
characteristics of pulmonary edema after subarachnoid haemorrhage
J Neurosurg 2015; 1-10
Mutoh T, Kazumata K, Ueyama-Mutoh T., Taki Y, Ishikawa T
Transpulmonary Thermodilution-Based Management of Neurogenic Pulmonary Edema After Subarachnoid Hemorrhage

Impact of transpulmonary thermodilution-based cardiac contractility and extravascular lung water measurements on clinical outcome of patients with Takotsubo cardiomyopathy after subarachnoid hemorrhage: a retrospective observational study
Crit Care 2014; 18(4): 482

Early Intensive Versus Minimally Invasive Approach to Postoperative Hemodynamic Management After Subarachnoid Hemorrhage
Stroke 2014; 45(5): 1280-4

Tagami T, Kuwamoto K, Watanabe A, Unemoto K, Yokobori S, Matsumoto G, Yokota H.
Optimal Range of Global End-Diastolic Volume for Fluid Management After Aneurysmal Subarachnoid Hemorrhage: A Multicenter Prospective Cohort Study
Crit Care Med 2014; 42(6): 1348 - 56

Multicenter Prospective Cohort Study on Volume Management After Subarachnoid Hemorrhage: Hemodynamic Changes According to Severity of Subarachnoid Hemorrhage and Cerebral Vasospasm
Stroke 2013; 44(8); 2155-61

Sato Y, Isotani E, Kubota Y, Otomo Y, Ohno K
Circulatory characteristics of normovolemia and normotension therapy after subarachnoid hemorrhage, focusing on pulmonary edema
Acta Neurochir (Wien) 2012; 154(12): 2195-202

Mutoh T, Kazumata K, Kobayashi S, Terasaka S, Ishikawa T
Serial Measurement of Extravascular Lung Water and Blood Volume During the Course of Neurogenic Pulmonary Edema after Subarachnoid Hemorrhage: Initial Experience With 3 Cases
J Neurosurg Anesthesiol 2011; 24(3): 203-8

Lazaridis C
Advanced Hemodynamic Monitoring: Principles and Practice in Neurocritical Care
Neurocrit Care 2012; 16(1): 163-9

Verein M, Valiahmedov A, Churliaev Y, Sitnikov P, Redkokasha L, Lukashev K
Dynamics of extravascular pulmonary water and intracranial pressure in patients with ischemic stroke.
Mutoh T, Kazumata K, Ishikawa T, Terasaka S
Performance of Bedside Transpulmonary Thermodilution Monitoring for Goal-Directed Hemodynamic Management After Subarachnoid Hemorrhage
Stroke 2009; 40(7): 2368 - 74

Mutoh T, Kazumata K, Ajiki M, Ushikoshi S, Terasaka S.
Goal-Directed Fluid Management by Bedside Transpulmonary Hemodynamic Monitoring After Subarachnoid Hemorrhage
Stroke 2007; 38(12): 3218-24

Segal E, Greenlee JD, Hata SJ, Perel A.
Monitoring intravascular volumes to direct hypertensive, hypervolemic therapy in a patient with vasospasm
J Neurosurg Anesthesiol 2004; 16(4):296-8

Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A.
Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery
Anesth Analg 2001; 92(4):984-9

5.8 Pediatrics
Cardiac index monitoring by femoral arterial thermodilution after cardiac surgery in children
J Crit Care 2014; 29(6): 1132.e1-1132.e4

Optimized fluid management improves outcomes of pediatric burn patients

Nusmeier A, de Boode WP, Hopman JC, Schoof PH, van der Hoeven JG, Lemson J
Cardiac output can be measured with the transpulmonary thermodilution method in a paediatric animal model with a left-to-right shunt
Br J Anaesth 2011; 107: 336-43

Branski LK, Herndon DN, Byrd JF, Kinsky MP, Lee JO, Fagan SP, Jeschke MG
Transpulmonary thermodilution for hemodynamic measurements in severely burned children
Crit Care 2011; 15(2): R118

Prognostic value of extravascular lung water index in critically ill children with acute respiratory failure

Lemson J, Merkus P, van der Hoeven JG
Extravascular lung water index and global end-diastolic volume index should be corrected in children
J Crit Care 2011;26(4): 443 e7- 432 e12
Cardiac output and blood volume parameters using femoral arterial thermodilution
Pediatr Int 2009; 51(1): 59-65
●●●

Lemson J, Backx AP, van Oort AM, Bouw TP, van der Hoeven JG
Extravascular lung water measurement using transpulmonary thermodilution in children
●●●

Lemson J, de Boode WP, Hopman JC, Singh SK, van der Hoeven JG
Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model
●●

Fakler U, Pauli Ch, Balling G, Lorenz HP, Eicken A, Hennig M, Hess J.
Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery
●●●

Lopez-Herce J, Ruperez M, Sanchez C, Garcia C, Garcia E
Hemodynamic response to acute hypovolaemia, rapid blood volume expansion and adrenaline administration in an infant animal model
Resuscitation 2006; 68: 259-65
●●

Egan J, Festa M, Cole A, Nunn GR, Gillis J, Winlaw DS
Clinical assessment of cardiac performance in infants and children following cardiac surgery
●●●

Pulse contour cardiac output system use in pediatric orthotopic liver transplantation: preliminary report of nine patients
Transplant Proc 2005; 37(7):3168-70
●●

Monitoring of intrathoracic volemia and cardiac output in critically ill children
Minerva Anestesiol 2003; 69:907-18
●●●

Pauli C, Fakler U, Genz T, Hennig M, Lorenz HP, Hess J
Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle
Intensive Care Med 2002; 28(7):947-52
●●●

Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants
J Cardiothorac Vasc Anesth 2002; 16(5):592-7
●●●
5.9 Septic Shock
Lu NF, Zheng RQ, Lin H, Shao J, Yu JQ, Yang G
Improved sepsis bundles in the treatment of septic shock: a prospective clinical study

Chung FT, Lin HC, Kuo CH, Yu CT, Chou CL, Lee KY, Kuo HP, Lin SM
Extravascular lung water correlates multiorgan dysfunction syndrome and mortality in sepsis
PLoS One 2010; 5(12): e15265

Ritter S, Rudiger A, Maggiorini M
Transpulmonary thermodilution derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study
Crit Care 2009; 13(4): R133

Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge
Crit Care Med 2007; 35(1):64-9

Kortgen A, Niederprün P, Bauer M
Implementation of an evidence-based „standard operating procedure“ and outcome in septic shock

Martin GS, Eaton S, Mealer M, Moss M
Extravascular lung water in patients with severe sepsis: a prospective cohort study
Crit Care 2005; 9(2):R74-82

Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL
Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock
Chest 2003; 124(5):1900-8

5.10 Surgical Intensive Care
Oshima K, Kunimoto F, Hinohara H, Hayashi Y, Kanemaru Y, Takeyoshi I, Kuwano H
Evaluation of respiratory status in patients after thoracic esophagectomy using PiCCO system

Sato Y, Motoyama S, Maruyama M, Hayashi K, Nakae H, Tajimi K, Ogawa J.
Extravascular Lung Water Measured Using Single Transpulmonary Thermodilution Reflects Perioperative Pulmonary Edema Induced by Esophagectomy

Groeneveld AB, Verheij J, van den Berg FG, Wisselink W, Rauwerda JA.
Increased pulmonary capillary permeability and extravascular lung water after major vascular surgery: effect on radiography and ventilatory variables
Eur J Anaesthesiol 2006; 23(1):36-41
Deja M, Hildebrandt B, Ahlers O, Riess H, Wust P, Gerlach H, Kerner T
Goal-directed therapy of cardiac preload in induced whole-body hyperthermia
Chest 2005; 128(2):580-6
●●

Michard F, Schachtrupp A, Toens C
Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients
●●

5.11 Transplantation

Extravascular Lung Water and Pulmonary Vascular Permeability Index Measured at the End of Surgery Are Independent Predictors of Prolonged Mechanical Ventilation in Patients Undergoing Liver Transplantation
Anesth Analg 2015; 121(3): 736 - 45
●●

Reydellet L, Blasco V, Mercier MF, Antonini F, Nafati C, Harti-Souab K, Leone M, Albanese J.
Impact of a goal-directed therapy protocol on postoperative fluid balance in patients undergoing liver transplantation: A retrospective study
Ann Fr Anesth Reanim 2014; 33(4): e47-54
●●

Minambres E, Coll E, Duerto J, Suberviola B, Mons R, Cifrian JM, Ballesteros MA
Effect of an intensive lung donor-management protocol on lung transplantation outcomes
J Heart Lung Transplant 2014; 33(2): 178-84
●●

Measurement of extravascular lung water following human brain death; implications for lung donor assessment and transplantation
●●

Perioperative intra- and extravascular volume in liver transplant recipients
Transplant Proc 2011; 43(4): 1098-102
●●

Early donor management increases the retrieval rate of lungs for transplantation
Ann Thorac Surg 2008; 85: 278-86
●●

Della Rocca G, Costa GM, Coccia C, Pompei L, Di Marco P, Pietropaoli P
Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation
Anesth Analg 2002; 95(4):835-43
●●
Della Rocca G, Costa MG, Coccia C, Pompei L, Pietropaoli P
Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques
Eur J Anaesthesiol 2002; 19(12):868-75
●●●

Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P.
Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique
Br J Anaesth 2002; 88(3):350-6
●●

Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B.
Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation
Chest 2000; 118(3):775-81
●●●

5.12 Lung Resection
Naidu BV, Dronavalli VD, Rajesh PB.
Measuring lung water following major lung resection
●●

Kuzkov VV, Suborov EV, Kirov MY, Kuklin VN, Sobhkhez M, Johnsen S, Waerhaug K, Bjertnaes LJ
Extravascular lung water after pneumonectomy and one-lung ventilation in sheep
●●●

Roch A, Michelet P, D’Journo B, Brousse D, Blayac D, Lambert D, Auffray JP
Accuracy and limits of transpulmonary dilution methods in estimating extravascular lung water after pneumonectomy
Chest 2005; 128(2):927-33
●●

5.13 Trauma
Influence of extravascular lung water determination in fluid and vasoactive therapy
J Trauma 2009; 67(6): 1220-4
●●●

Berkenstadt H, Friedman Z, Preisman S, Keidan I, Livingstone D, Perel A
Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs
●●

Friedman Z, Berkenstadt H, Margalit N, Segal E, Perel A
Cardiac output assessed by arterial thermodilution during exsanguination and fluid resuscitation: experimental validation against a reference technique
●●
6. PiCCO parameters in various clinical situations
The relationship between arterial transducer level and pulse contour waveform-derived measurements
Crit Care 2015; 19(1): 31

Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction
Intensive Care Med 2015; 41; 487 - 94

Compton F, Vogel M, Zidek W, van der Giet M, Westhoff T
Changes in Volumetric Hemodynamic Parameters Induced by Fluid Removal on Hemodialysis in Critically Ill Patients
Ther Apher Dial 2015; 19(1):34-9

Demirgan S, Erkalp K, Sevdi MS, Aydogmus MT, Kutbay N, Firincioglu A, Ozalp A, Alagol A
Cardiac condition during cooling and rewarming periods of therapeutic hypothermia after cardiopulmonary resuscitation
BMC Anesthesiol 2014; 14: 78

Huber W, Kraski T, Haller B, Mair S, Saugel B, Beitz A, Schmid RM, Malbrain ML
Room-temperature vs. iced saline indicator injection for transpulmonary thermodilution
J Crit Care 2014; 29(6): 1133e7 – 1133 e14

Adler C, Reuter H, Seck C, Hellmich M, Zobel C
Fluid therapy and acute kidney injury in cardiogenic shock after cardiac arrest
Resuscitation 2013; 84(2): 194-9

Impact of large-volume thoracentesis on transpulmonary thermodilution-derived extravascular lung water in medical intensive care unit patients
J Crit Care 2013; 28(2): 196-201

Transpulmonary thermodilution measurements are not affected by continuous veno-venous hemofiltration at high blood pump flow
Intensive Care Med 2012; 38(7): 1162-8

Tagami T, Kushimoto S, Tosa R, Omura M, Hagiwara J, Hirama H, Yokota H
The precision of PiCCO(R) measurements in hypothermic post-cardiac arrest patients
Anaesthesia 2012; 67(3): 236-243

Heise D, Faulstich M, Morer O, Brauer, Quintel M
Influence of continuous renal replacement therapy on cardiac output measurement using thermodilution techniques
Minerva Anestesiol 2012; 78(3): 315-21
Precision of the transpulmonary thermodilution measurements

Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W
Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter

Effect of the venous catheter site on transpulmonary thermodilution measurement variables
Crit Care Med 2007; 35(3): 783-6

Compton F, Hoffmann C, Zidek W, Schmidt S, Schaefer JH
Volumetric hemodynamic parameters to guide fluid removal on hemodialysis in the intensive care unit
Hemodial Int 2007; 11(2): 231-7

Sakka S, Hanusch T, Thuemer, Wegscheider K
The influence of venovenous renal replacement therapy on measurements by the transpulmonary thermodilution technique

Kuhn C, Kuhn A, Rykow K, Osten B
Extravascular lung water index: A new method to determine dry weight in chronic hemodialysis patients
Hemodial Int 2006; 10(1): 68-72

The impact of Intra-aortic Balloon Pumping on Cardiac Output Determination by Pulmonary Arterial and Transpulmonary Thermodilution in Pigs
J of Cardiovasc and Vasc Anesth 2006; 20 (3): 320-4

Michelet P, Roch A, Gainnier M, Sainty JM, Auffray JP, Papazian L
Influence of support on intra-abdominal pressure, hepatic kinetics of indocyanine green and extravascular lung water during prone positioning in patients with ARDS: a randomized crossover study
Crit Care 2005; 9(3): R251-7

Wiesenack C, Prasser C, Liebold A, Schmid FX
Assessment of left ventricular cardiac output by arterial thermodilution technique via a left atrial catheter in a patient on a right ventricular assist device

Luecke T, Roth H, Herrmann P, Joachim A, Weisser G, Pelosi P, Quintel M
PEEP decreases atelectasis and extravascular lung water but not lung tissue volume in surfactant-washout lung injury
Intensive Care Med 2003; 29(11): 2026-33
Reuter DA, Felbinger TW, Schmidt C, Moerstedt K, Kilger E, Lamm P, Goetz AE
Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance
● ●

Hofer CK, Zalunardo MP, Klaghofer R, Spahr T, Pasch T, Zollinger A
Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning
Acta Anaesthesiol Scand 2002; 46(3):303-8
● ●

Kampen J, Liess K, Casadio C, Tonner PH, Scholz J
Thermal lesions caused by a PiCCO catheter left in place in the MRT
Intensivmedizin und Notfallmedizin 2002; 39(1):113
●

7. Catheters

Complications related to less-invasive haemodynamic monitoring
Br J Anaesth 2011; 106: 482-6
● ●●

Gassanov N, Caglayan E, Nia A, Erdmann E, Er F
[The PiCCO catheter]
Dtsch Med Wochenschr 2010; 135(46): 2311-4
● ●●

Galluccio ST, Chapman MJ, Finnia ME
Femoral-radial arterial pressure gradients in critically ill patients
Crit Care Resusc 2009; 11(1): 34-8
● ●●

Smith JA, Camporota L, Beale R
Monitoring arterial blood pressure and cardiac output using central or peripheral arterial pressure waveforms
● ●●

Effect of the venous catheter site on transpulmonary thermodilution measurement variables
Crit Care Med 2007; 35(3):783-6
● ●●

Traore O, Liotier J, Souweine B
Prospective study of arterial and central venous catheter colonization and of arterial- and central venous catheter-related bacteremia in intensive care units
● ●●

Cousins TS, O’Connell JM
Arterial Cannulation: A Critical Review
AANA Journal 2004; 72 (4): 267-71
● ●●
Orme RM, Pigott DW, Mihm FG
Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution
Anaesthesia 2004; 59: 590-4

Segal E, Katzenelson R, Berkenstadt H, Perel A
Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients

Scheer B, Perel A, Pfeiffer UJ
Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine
Crit Care 2002; 6(3):199-204

‘This document is intended to provide information to an international audience outside of the USA’